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ABSTRACT

Some important. considerations and concepts concerned
with determining propeller performance in open-water and
propulsion (behind-body) conditions are discussed. Two
wake-adapted propellers were designed by the Eckhardt-
Morgan method using Lerbs' theory of moderately loaded
propellers. Performance of these propellers in open-water
and wake-adapted conditions was calculated by the Burrill
method. ¥or the examples of a submerged body of revolution
and a single-screw surface ship, relative rotative effi-
ciencies as obtained by theory and model experiment are
shown to be in good agreement,

INTRODUCTION

Various aspects of propulsion interaction are being studied at the
David Taylor Model Basin with the support of the Bureau of Ships Funda-
mental Hydromechanics Research Program. In view of the general use of the
propulsive coefficient and its components as a means of analyzing pro-
pulsion experiments, it is profitable to study these quantities analyt-
ically. To this end theoretical calculations and experiments were per-
formed to determine propeller efficiency in open water, behind a submerged
body of revolution, and behind a single=-screw surface ship., The principal
purpose of the present work is to compare propeller performance obcained
by both theory and experiment. Burrill's™ method, which employs Goldstein
factors in determining induced velocities, is used for calculating pro-
peller performance in open-water and behind-body conditions. For comparison
purposes, Lcr‘bs'2 theory of moderately 1o§ded propellers is used for the
solution of the optimum propeller performance problem for the behind-body
condition since this theory is a part of the Eckhar‘dt—Morgan3 propeller
design method used in designing the propellers.

Burrill and Yam;4 computed open-water propeller efficiency and
behind-body propeller efficiency for twin-screw and single-screw ships
utilizine several definitions of advance coefficient (or inflow velocity);
however, no experimental data were presented in connection with these

results. An examination of the virtual propeller efficiency as computed

1 .
References are listed on page 18,



in Reference 4 reveals that it is assessed in the same manner as the
cfficiency for the propelier, when working in a variable wake, given in
this report.

The prinicpal limitations and assumptions involved in this in-
vestigation are:

1. Circumferential wake variations (when they occur) and their
effect on the clemental forces acting at the propeller blade sections are
not considered; i.e., at cach blade radius the local wake represents a
mean vaiue in the circumterential direction.

2. It is assumed in the Burrill solution of the inverse propeller
problem that the Goldstein factors may be applied for both optimum and
nonoptimum circulation distributions. Lerbs! theory of moderately loaded
propellers applies to an arbitrary circulation distribution.

3. As presented, the method does not consider the gain in propeller
efficiency that might occur when a rudder is placed in the propeller slip-
stream. This limitation is restrictive when comparing the results obtained
from theorm and experiment in the example of the surface ship. Propulision
tests of the body of revolution were conducted with the basic bare hull,

4. It is recoenized that differences in factors such as the extent
of turbulence and test Reynolds number between open-water and propulsion
tests micht be important in some cases. It is believed that estimat.. of
relative rotative efficiency may be caculated for bodies with non-
separating flow., Of course, if tests are not conducted above a critical
Revnolds number and the open-water test arrangement presents obvious flow
interferences with respect to the propeller, then the relative rotative

efficiency assumes the role of an arrancement factor.
CONCEPT QF PROPELLER RELATIVE ROTATIVE EFFICTENCY

From a propulsion viewpoint the performance of a body and propeller

D

system wmay be analyzed by means of the propulsive coefficient Tj and its
T, may be expressed as:

; S
i ents., sumi h V =V andn_ =n, T
components Assuming that ° 2 g > p

“Subscript o indicates open-water value.
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PE ‘ RTV RTV

[ — :ann:Tv';Serg'ig (]
D a o0 0o
where P, is effective (towrope) power,
PD is power delivered to the propeller,
RT is hull resistance without propeller,
T is propeller thrust,
Q 1is propeller torque,
V is ship speed,
Va is propeller effective speed of advance, and
n 1is propeller rate of revolution.

Reading from left to richt, each factor on the right-hand side of

Equation [17 is known as follows:

RTV -t
1, Hull efficiency (ﬁH) == v o T
A

where t is the thrust-deduction coefficient and w is an effective wake
fraction. TOV‘

2. Propeller open-water efficiency (T ) == f:ri;r——~

© SN
TQO
3. Propeller relative rotative efficiency (*R) = T o

Q0

For the case of thrust identity, where T = T, which is the case
0

Q

considered here, fl{is cqual to o Methods for estimatineg thrust
Q
. . ¢ . .
deduction and wake fraction have been treated elsewhere. Relative rotative
o . . . B : , .
efficiency is defined by R where ﬂB is propeller efficiency for
o

. o < 7 . e s -
the behind-body condition, R. E. Froude proposed this definition of R
and described its physical meaning and significance.

The concept of relative rotative efficiency, arises in the use

R
of the familiar Froude synthesis of propeller open-water test results and
propulsion test results. In practice, Wq{may be obtained indirectly from
propulsion test data by the relation between the propulsive coefficient

and its components; sec Equation [1]. That is, using experimental values



of effective and shaft horsepower, hull efficiency, and open-water propeller

efficiency, M, is calculated as a derived quantity from Equation [1].

R
This means that, except for test error, UR represents the effects of
dissimiliarity in flow conditions on the propeller behind *he body and in

open water (see Introduction, Assumption 4),
PROPELLER EFFICIENCY

THEORETICAL APPROACH

When wake data are available, it is possible to compute both open-
water and behind-body propeller efficiencies from existing propeller

theory.l’3

The procedure for calculating propeller efficiency is based on
an integrationw of the propeller thrust and torque loading distribution.
It is well to recall at this point that for a given ship the propulsive
coefficient of Equation [) ] and not the propeller efficiency in the behind-
body condition is the criterion for optimizing the propulsion performance
of a body and propeller system. Based on the foregoing, propeller
efficiency for the behind-body condition may be estimated from the relation

1 dc

TSi

1 -c¢ 1 - — dx

J.( tan Bi) ( wx) =

hub
T, T -
B o ° nR (2]

[h o) o

1

hub

where the propeller nonviscous thrust-load and power coefficients, C
and C

TSi
psi are nondimensionalized on ship speecd

€ is the section drag-lift ratio,

Bi is the hydrodynamic pitch angle,

wOnly one integration need be perfcrmed since a design is based either on

constant thrust or on constant power.



X is the radius fraction, and

(1-wx) is the circumferential average wake factor at radius x.
Equation [2] was evaluated, using Lerbs' theory of moderately loaded
propellers, during the design of the two propellers considered here.

Next, consider wake-adapted propeller performance in open water,
Propeller performance characteristics in open water are of considerable
interest, particularly for systematic propeller series and for ship
powering estimates where the familiar concept of an effective speed of
advance is introduced. In this analysis, Burrill's1 method was used to
calculate performance of the given propellers when operating in a given
flow.

The computations are programmed for the IBM=704 computer. Since,

ultimately, the ratio of propeller efficiency in the wake (behind-body
n

condition) to propeller efficiency in open water, TB = "R , 1is desired,
0

the Burrill method was used to calculate in a consistent manner both pro-

peller efficiencies. Theoretically, however, the Goldstein factors do
not apply (see Introduction, Assumption 2) to the behind-body efficiency.
It should be emphasized that the propeller efficiency for the behind=body
condition is calculated rigorously by the use of Lerbs' theory of
moderately loaded propellers. For the examples presented and discussed
(that is, a submerged body of revolution and a surface ship) behind-body

propeller efficiency is computed by both methods.,
EMPIRICAL APPROACH

An alternate approach in determining the open=-water efficiency of a
wake=-adapted propeller is as follows: It is assumed that the propeller was
designed for wake-adapted operation and, consequently, a distribution of
tan Bi’ dCTSi’ and dbPSi is available. The behind-body propeller

efficiency is obtained from Equation (21, usine the prescribed wake



distribution. To calculate open=-water propeller efficiency, using the
elementary thrust and power coefficients appropriate to the behind-body
condition, the radial wake distribution is replaced by a constant factor
(1-w), in the numerator, called the effective velocity ratio. The
effective wake fraction w, which is obtained by the usual Froude synthesis
or estimated by other means, arises essentially from cwo causes:

1. The propeller blade sections (wake-adapted calculation) do not

experience the same distribution of tan Bi’ dCTSi’ and dCP in open water.

2. An alteration of the flow about the body due to i;e presence of
the working propeller. Viewed as a potential problem, this is equivalent
to adding an additional disturbing singularity to satisfy the boundary
conditions on the body surface due to the propeller-induced velocities,
Since this approach is essentially empirical, it will not be discussed
further except to note that, in general, good results may be expected from
this procedure, and in the two examples discussed, precise agreement

with experimental results was obtained.
EXAMPLES AND DISCUSSION

SUBMERGED BODY OF REVOLUTION

A five-bladed wake-adapted propeller (TMB 3836) was designed !v
Lerbs' theory of moderately loaded propellers and the method given in
Reference 3, to operate behind a submerged body of revolution of 7.3
fineness ratio (see Figures 1 and 2). In addition to the design calcula-
tions, propeller efficiencies were determined by experimentation and by
computation using the Burrill method for both the open-water and behind-
body conditions. The necessary input data (wake-adapted) for Equation
(271 are given in Table 1, and the output data from the IBM=704 computer
using the Burrill method is given in Table 2. Graphs of the open-water
characteristics and KT versus KQ for propulsion conditions are given in

Figure 4.
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TABLE 1

Propeller 3836, Input Data for Equation [2] from Design Calcul ations

X *} l-wx tan Bi € 10 dCTSi 10 dCPSi
dx dx
0.2 | 0.495 | 1.810 | =-mmm- 0.000 0.000
03?101(/17 f'v'ir.ﬂ;? 0.0186 | 1.086 0.898
0.4 0.e87 | 1.000 | 0.0097 | 2,080 1.777
0.5 | 0.74% | 0.890 | 0.0235 | 2.923 2,671
0.6 | 0.799 | 0.700 | 0.0207 | 3.204 | 3.423
0.7 | 0.845 | 0.675 | 0.0379 | 4.030 3.914

0.5 | 0.6 | 0,005 | 0.0450 | 4,022 | 4001 |

0.9 ] 0.925 | 0.530 | 0.0555 3.320 | 3.381 |
1.0 | 0.963 | 0.505 | ===-== | 0.000 0.000

Design K = 0.192




TABLE 2
Characteristics for Propeller 3836 as Computed by the Burrill Method

Open-Water Characteristics Behind-Body Characteristics
J C )
hT 10 KQ KT 10 KQ
1.525 | 0.094 | 0.291 0.071 0.220
1.387 | 0.221 | 0.4060 0.104 0.443
1.272 | 0.222 1 0.57% 0.229 0.5%8
1,000} 0.297 | 0.726 0.280 0.654
0.954 0.347 0.50K 0.319 0.753
T 0. 369 0.834
0.402 0,851
Lo
- fe—— — 0.6 —*
R [)
: (
E3 AF TERBODY -
3+ - — - — :::::1Eif)f-
-— ) X
x X [———b
; g y / STING
STATION -——=
—!L 0.966

Figure 1 - Schematic Drawing of Propeller Location Relative to Body
of Revolution
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The following experimental and computed results were obtained with

Propeller 3836 for the several propeller efficiencies:

Computed Results

Propeller Experimental
Efficiencies Burrill | Lerbs' Induction Results
Factors
Open water, To 0.86 0.83" 0.582
"~ Behind body, Ny 0.81 0.78 0.77
Relative rotative, T 0.94 0.94

R

As scen from the data presented, experimental verification was obtained for
the relative rotative efficiency. Good asreement with the experimental re-
sults was obtained for both the separate open-water efficiency Wo and the
behind-body efficiency ?B by using the design calculations of Table 1 and
YR dPredicted from the Burrill calculations to obtain 70. In contrast, the
Separate propeller efficiencies obtained from the Burrill method are four
points hicher than the comparable experimental values. This could be due
to the fact that Propeller 3536 has an unusual ly high pitch ratio,

(P/D)O.7 2 1.57; the Burrill method misht be expected to give better re-

sults for more moderately pitched propellers.

SURFACE SHIP

Propeller efficiencies for surface ships may be calculated from
Equation [27 by utilizing the total wake including a wave component. Un-
doubtedly, the numerical integration of a circumferentially nonuniform
wake is different from that performed by a propeller. However, it is of
practical and academic interest to obtain computed and experimental results
for a typical sincle-screw surface ship. For this purpose, .a four=bladed

wake-adapted propeiler T™MB 3471 which was designed by the method given in

“Derived from 0T s assuming Y:R:: 0.94.
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Reference 3 for the Mariner-class merchant ship, was chosen as an example;

see Figure 3. In a manner similar to that for the body of revolution,

the necessary input data (behind-body condition) for Equation [2] are
tabulated ir Table 3 for a ship speed of 21 knots; the results from the
Burrill method are given in Table 4. Graphs of the open-water characteristics

and Ky versus KQ for propulsion conditions are given in Figure 5,

TABLE 3
Propeller 3471, Input Data for Equation [2] from Design Calculations

dC .. | dc
X 1-w tan B. € TSi PSi
0.2 | 0.570 | 1.414 ——=== | 0,0000 | 0.000

0.3 | 0.656 | 1.005 | 0.0195 | 0.246 | 0.234
0.4 | 0.712 | 0.786 | 0.0202 | 0.465 | 0.463
0.5 | 0.751 | 0.046 | 0.0226 | 0.685 | 0.700
0.6 | 0.779 | 0.548 | 0.0258 | 0.882 | 0.917
0.7 | 0.800 | 0.476 | 0.0294 | 1.037 | 1.092
0.6 | 0.515 | 0.421 | 0.0328 | 1.108 | 1.181
0.9 | 0.'8264L 0.37¢ | 0.0373 | 0.991 | 1.062

—

1.0 | 0.837 | 0.341 | ==——— | 0.000 | 0.000

Design KT = 0,212.

11
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TABLE 4
Characteristics for Propeller 3471 as Computed by the Burrill Method

Open-Water Characteristics || Behind-Ship Characteristics
J KT 10 KQ KT 10 KQ
1.205 | 0.054 | 0.148 0.194 0.387
0.938 | 0,180 | 0.308 0.266 0.488
0.844 | 0.217 | 0.423 0.287 0.514
0.708 | 0.245 | 0.463 0.303 0.533
0.704 | 0.265 | 0.488 0.315 0.54C
0.604 | 0.295 | 0.525 0.332 0.557
0.563 | 0.305 | 0.535 0.337 0.563

13



The following experimental and computed results were obtained with
Propeller 3471 for the several propeller efficiencies:

Computed Results
Propeller Experimental
Efficiencies Burrill | Lerbs' Induction Results
Factors
Open water, ﬂo 0.08 0.69" 0.70
Behind body, ﬂB 0.69 0.70 0.70
Relative rotative, VR 1.01 1.00

As seen from the data presented, compute& and experimental efficiencies are
in pood agreement. 1In fact, the open-water efficiency and behind-body
efficiency according to the Burrill method are only two points and one
point lower, respectively, than the experimental values. Note that the
agreement is considerably better than that obtained in the example of the
body of revolution with Propeller 3836 which has a hich pitch ratio of 1,57.
Propeller 3471 has a pitch ratio of 1.15.

Two important points may be observed from the results: (1) behind-
body efficiency VB predicted by the Burrill method agrees well with the

desien calculations and (2) the relative rotative efficiency ~ _ is essentially

unity. However, it would normally be expected that the experi;Lntal value
of ’R would be a few points greater (compared to the calculated value of
’R) due to the favorable effect of the rudderS installed behind the pro-
peller for the propulsion test, The computed results do not consider the
gain in efficiency that might occur when a rudder is placed in the pro-

peller slipstream.

+

™ B
Derived from T 0 —, assuning ﬂR =1.01.

TR
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CONCLUSIONS

In summarizing the results obtained for the examples of a submerged
body of revolution and a single-screw surface ship, it seems reasonable to
conclude that:

1. Propeller relative rotative efficiency defined as the ratio of
propeller efficiency in the behind-body condition to that in the open-water
condition may be accurately calculated, as cvidenced by experimental
verification, using the Burrill method.

2. When compared to experimental data, better results were obtained
for the behind-body propeller efficiency from the design calculations,
using the Eckhardt-Morgan design method, than were predicted by the Burrill
method.

3. The Burrill method gave better results for separate open-water
and behind-body propeller efficiencies in the case of the more moderately

pitched surface ship propeller.

15
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